
Clay Codes: Moulding MDS Codes to Yield an MSR Code

Abstract

With increasing scale, the number of node failures in
a data center increases sharply. To ensure availability of
data, failure tolerance schemes such as Reed-Solomon
(RS) or more generally, Maximum Distance Separable
(MDS) erasure codes are used. However, while RS or
MDS codes offer minimum storage overhead for a given
number of failure tolerance, they do not meet other prac-
tical needs of today’s data centers. While modern codes
such as minimum storage regenerating (MSR) codes are
designed to meet these practical needs, these are avail-
able only in highly-constrained theoretical constructions,
that are not sufficiently mature for practical implementa-
tion. We present Clay codes that extract the best from
both worlds. Clay (short for Coupled-layer) codes are
MSR codes that offer a simplified construction for de-
coding/repair by using pairwise coupling across multiple
stacked layers of any single MDS code.

In addition, Clay codes provide the first practical im-
plementation of an MSR code that offers (a) low stor-
age overhead, (b) optimal repair bandwidth, (c) low
sub-packetization level, (d) support for both single and
multiple-node repairs, (e) uniform repair performance of
data and parity nodes while permitting faster & more ef-
ficient repair.

While all MSR codes are vector codes, none of the dis-
tributed storage systems support vector codes. We have
modified Ceph to support any vector code, and our con-
tribution is on its way to Ceph’s master codebase. We
have implemented Clay codes, and integrated it as a plu-
gin to Ceph. Six example Clay codes were evaluated on a
cluster of Amazon EC2 instances whose parameters were
carefully chosen to match known erasure-code deploy-
ments in practice. A particular example code, with stor-
age overhead 1.25x, is shown to reduce repair network
traffic by a factor of 2.9 in comparison with RS codes
and similar reductions are obtained for both repair time
and disk-read.

1 Introduction

As data centers scale, the number of failures in storage
subsystems increase [9] [16] [28]. In order to ensure
data availability and durability, failure-tolerant solutions
such as replication and erasure codes are used. It is im-
portant for these solutions to be highly efficient so that
they incur low cost in terms of their utilization of stor-
age, computing and network resources. This additional
cost is considered an overhead, as the redundancy intro-
duced for failure tolerance does not aid the performance
of the application utilizing the data.

Increasingly, data centers have started to adopt erasure
codes in place of replication for failure tolerance. A class
of erasure codes known as maximum distance seperable
(MDS) codes offer the same level of failure tolerance as
replication codes at a minimal storage overhead. For ex-
ample, Facebook [18] report reduced storage overheads
of 1.4x by using Reed-Solomon codes, a popular MDS
code, as opposed to 3x in traditional triple replication
[11]. The disadvantage of erasure codes is their high re-
pair cost. That is, in case of replication, when a node or
a storage subsystem fails, an exact copy of the lost data
can be copied from surviving nodes. However, in case of
erasure codes, dependent data that is more voluminous
in comparison with the lost data, is copied from surviv-
ing nodes; and the lost data is then computed by a repair
node. This results in increased repair bandwidth and re-
pair time.

A second class of erasure codes termed as minimum
storage regenerating (MSR) codes offer all the advan-
tages of MDS codes, but require lesser repair bandwidth.
Until recently, MSR codes lacked several key desirable
properties that are important for practical systems. For
example, they lacked constructions of common erasure
code configurations [23], [19], they were computation-
ally more complex [13], they demonstrated non-uniform
repair characteristics for different types of node failures
[12], they were able to repair from a limited (one or two)

1

number of failures [19], etc. The first theoretical con-
struction that offered all of the desirable properties of an
MSR code was presented by Ye & Barg [32].

This paper presents Clay codes (short for Coupled-
layer codes) that extend the theoretical construction pre-
sented by Ye & Barg with practical considerations. Clay
codes are constructed by placing any MDS code in mul-
tiple layers, and performing pair-wise coupling across
layers. Such a construction offers efficient repair with
reduced repair bandwidth, causing Clay codes to fall in
the MSR arena.

We implement Clay codes and make it available as
open-source under LGPL. We also integrate Clay codes
as a plugin with Ceph, a distributed object storage sys-
tem. Ceph supports scalar erasure codes such as Reed-
Solomon codes. However, it does not support vector
codes. We modified Ceph to support any vector code,
and our contribution is on its way to Ceph’s master/trunk
codebase [2].

In erasure codes terminology, scalar codes require
block-granular repair data, while vector codes can work
at the sub-block granularity for repair. Ceph’s equiva-
lent to an erasure coded block is a chunk of object. That
is, Ceph supports chunk-granular repair data, while our
contribution extended it to sub-chunk granularity. To
the best of our knowledge, our contribution, when ac-
cepted by the Ceph community, will cause Ceph to be-
come the first-ever distributed storage system to support
vector codes. Also, Clay codes will become the first-
ever implementation of an MSR code that provides all
desirable practical properties, and which is integrated to
a distributed storage system.

Our contribution includes (a) the construction of Clay
codes as explained in Section 3, (b) the modification we
made to Ceph in order support any vector codes, ex-
plained in Section 4, and (c) the integration of Clay codes
as a plugin to Ceph, explained in Section 4. We con-
ducted experiments to compare the performance of Clay
codes with Reed-Solomon codes available in Ceph and
the results are presented in Section 5. Our experiments
confirm reductions of 66% and 70% respectively in net-
work traffic and disk-read during repair of a node-failure
in a Ceph cluster employed with a particular Clay code.
Significant reductions in network traffic and disk-read
are observed while recovering from multiple failures as
well.

2 Background and Preliminaries

Erasure Code Erasure codes are an alternative to
replication for ensuring failure tolerance in data storage.
In an [n,k] erasure-coded system, data pertaining to an
object is first divided into k data chunks and then encoded
to obtain m = n−k parity chunks. When we do not wish

to distinguish between data or parity chunk, we will sim-
ply refer to the chunk as a coded chunk. The collection
of n coded chunks obtained after encoding, are stored in
n distinct nodes. Here, by node, we mean an indepen-
dent failure domain such as a disk or a storage node of a
distributed storage system (DSS). The storage efficiency
of an erasure code is measured by the storage overhead,
defined as the ratio of the number of coded chunks n to
the number of data chunks k. Every erasure code has an
underlying finite field over which computations are per-
formed. For the sake of simplicity, we assume here that
the field is of size 28 and hence each element of the fi-
nite field can be represented by a byte1. It is convenient
to differentiate at this point, between scalar and vector
codes.
Scalar Codes Let each data chunk be comprised of L
bytes. In the case of a scalar code, one byte from each
of the k data chunks is picked and the k bytes are lin-
early combined in m different ways, to obtain m parity
bytes. The resultant set of n = k+m bytes so obtained is
called a codeword. This operation is repeated in parallel
for all the L bytes in a data chunk to obtain L codewords.
This operation will also result in the creation of m parity
chunks, each composed of L bytes (see Fig. 1). As men-
tioned above, each coded chunk is stored on a different
node.

Data chunks Parity chunks

Codeword

Byte

Figure 1: A pictorial representation of a scalar code. The L = 6 horizontal layers
are the codewords and the n = 6 vertical columns, the chunks, with the first k = 4
chunks corresponding to data chunks and the last (n− k) = 2 chunks, the parity
chunks. Each unit (tiny rectangle) in the figure corresponds to a single byte.

Vector Codes A similar process is used in the case of
vector codes, with the difference that in the case of a vec-
tor code, one works with ordered collections of α ≥ 1
bytes at a time. For convenience, we will refer to such
an ordered collection of α bytes as a superbyte. In the
encoding process, a superbyte from each of the k data
chunks is picked and the k superbytes are then linearly
combined in m different ways, to obtain m parity super-
bytes. The resultant set of n = k+m superbytes is called
a (vector) codeword. This operation is repeated in paral-
lel for all the N = L

α
superbytes in a data chunk to obtain

N codewords. Figure 2 shows a simple example where
each superbyte consists of just two bytes.

1The codes described in this paper can however, be constructed
over a finite field whose size is significantly smaller, and approximately
equal to the parameter n. Apart from simplicity, we use the word byte
here since the finite field of size 28 is a popular choice in practice.

2

Data chunks Parity chunks

Codeword

Superbyte

1

2

1

2

1

2

Figure 2: A pictorial representation of a vector code where each superbyte con-
sists of 2 bytes. The picture shows N = 3 codewords. Each chunk, either data or
parity, stores 3 superbytes, one corresponding to a different codeword.

The number α of bytes within a superbyte is called the
level of sub-packetization of the code. Scalar codes such
as Reed-Solomon codes can be regarded as having sub-
packetization level α = 1. Seen differently, one could
also view a vector code as replacing α scalar codewords
with a single vector codeword. The advantage of vector
codes is that repair of the coded chunk in a failed node,
can potentially be accomplished by accessing only a sub-
set of the α bytes that are present in the remaining coded
chunks that correspond to the same codeword. This leads
to reduced network traffic during node repair.

Sub-chunking through Interleaving In Fig. 2, we
have shown the α bytes associated to a superbyte as
being stored contiguously. When the sub-packetization
level α is large, given that operations involving multliple
codewords are carried out in parallel, it is advantageous,
from an ease-of-memory-access viewpoint, to interleave
the bytes so that the corresponding bytes across different
codewords are stored contiguously as shown in Fig. 3.
This is particularly true, when the number N of superbyt-
ess within a chunk is large, for example, when L = 8KB
and α = 2, contiguous access to N = 4K bytes is pos-
sible. With interleaving, each data chunk is partitioned
into α subsets, which we shall refer to as sub-chunks.
Thus each sub-chunk within a node, holds one byte from
each of the N codewords stored in the node.

1

2

1

2

1

2

⇒
Interleave

1

1

1

2

2

2

subchunk

Figure 3: This figure shows the interleaving of the corresponding bytes within a
superbyte across codewords, for the particularly simple case of two bytes within
a superbyte. This results in a partitioning of the data chunk into sub-chunks and
can lead to improved-memory-access performance.

MDS Codes The sub-class of (n,k) erasure codes, ei-
ther scalar or vector, having the property that they can
recover from the failure of any (n− k) nodes are called
Maximum Distance Separable (MDS) codes. These
codes have the largest storage efficiency n

k of any erasure
code that can recover from the failure of a fixed num-
ber (n− k) of node failures. Examples include Reed-
Solomon (RS), Row-Diagonal Parity [7] and EVEN-

ODD [5] codes. Other examples can be found described
in [4]. Facebook data centers [27] for example, have em-
ployed an [14,10] RS code in their data warehouse clus-
ter.

Node Repair The need for node repair in a distributed
storage system, can arise either because a particular
hardware component has failed, is undergoing mainte-
nance, is being rebooted or else, is simply busy serv-
ing other simultaneous requests for data. A substan-
tial amount of network traffic is generated on account
of node-repair operations. An example cited in [27],
is one of a Facebook data-warehouse, that stores mul-
tiple petabytes of data, where the median amount of data
transferred through top-of-rack switches for the purposes
of node repair, is in excess of 0.2 petabytes per day. The
network traffic arising from node-repair requests, eats
into the bandwidth available to serve user requests for
data. In addition, the time taken for node repair directly
affects system availability. Thus there is strong interest in
coding schemes that minimize the amount of data trans-
fer across the network, and the time taken during the re-
pair of a failed node. Under the conventional approach
to repairing an RS code for instance, one would have to
download k times the amount of data as is stored in a
failed node to restore the failed node, which quite clearly,
is inefficient.

MSR Codes MSR codes [8] are a sub-class of vector
MDS codes that have the smallest possible repair band-
width. To restore a data chunk in a failed node in an
(n,k) MSR code, the code first contacts an arbitrarily-
chosen subset of d helper nodes. The quantity d is a
design parameter that can take on values ranging from k
to (n−1). It then downloads β = α

d−k+1 bytes from each
helper node in such a way that the total amount dβ of
bytes downloaded is typically much smaller than the to-
tal amount kα bytes of data stored in the k data chunks.
Here α is the sub-packetization level of an MSR code.
The total number dβ = dα

(d−k+1) of bytes downloaded for
node repair, is called the repair bandwidth. Let us de-
fine the normalized repair bandwidth to be the quantity
dβ

kα
= d

k(d−k+1) . The normalization by kα can be moti-
vated by viewing a single MSR codeword having sub-
packetization level α as a replacement for α scalar RS
codewords. The download bandwidth under the conven-
tional repair of a α , scalar RS codes is precisely equal to
kα bytes. For the particular case d = (n− 1), the nor-
malized value equals n−1

k(n−k) . It follows that the larger
the number (n− k) of parity chunks, the greater the re-
duction in repair traffic. We will also use the parame-
ter M = kα to denote the total number of databytes con-
tained in an MSR codeword. Thus an MSR code has
associated parameter set given by {(n,k),d,(α,β),M}
with β = α

d−k+1 and M = kα .

3

Code Storage
O/h

Failure
Tolerance

All node
optimal
repair

Access
Optimal

Repair
BW

Optimal
α

Order
of GF

Distributed
Systems

Implemented

RS Low n− k No No No 1 Low HDFS, Ceph,
Swift, etc.

PM-RBT [23] High n− k Yes Yes Yes Linear Low Own system
Butterfly [19] Low 2 Yes No Yes Exponential Low HDFS, Ceph
HashTag [12] Low n− k No No Yes Polynomial High HDFS

Clay code Low n− k Yes Yes Yes Polynomial Low Ceph
Table 1: Detailed comparison of Clay codes with RS and other practical MSR codes. Here, the scaling of α is with respect to n for a fixed storage overhead (n/k).

Additional Desired Attributes: Over and above the low
repair-bandwidth and low storage-overhead attributes of
MSR codes, there are some additional properties that one
would like a code to have. These include (a) uniform-
repair capability, i.e., the ability to repair data and parity
nodes with the same low repair bandwidth, (b) minimal
disk read, meaning that the amount of data read from disk
for node repair in a helper node is the same as the amount
of data transferred over the network from the helper node
and (c) low value of sub-packetization parameter α , and
(d) a small size of underlying finite field over which the
code is constructed.In MSR codes that possess the disk-
read optimal property, both network traffic and number
of disk reads during node repair are simultaneously min-
imized and are the same.

2.1 Related Work
The problem of efficient node repair has been studied for
a while and several solutions have been proposed. Lo-
cally repairable codes such as the Windows Azure Code
[14] and Xorbas [27] trade off the MDS property to al-
low efficient node-repair by accessing a lesser number of
helper nodes. The piggy-backed RS codes introduced in
[25] achieve reductions in network traffic while retaining
the MDS property but they do not achieve the savings
that are possible by an MSR code.

Though there were multiple implementaions of MSR
codes, they were lacking in one or the other of the de-
sired attributes (see Table 1). In [6], authors present
FMSR codes for (n− k) = 2, that allow efficient repair,
but the data that is reconstructed during repair will not
remain the same as the lost data. Consequently, it be-
comes necessary to invoke decoding algorithm at every
read request. In [23], the authors implement a modified
product-matrix MSR construction [26]. Although the
code displays optimal disk IO performance, the storage
overhead is on the higher side and of the form (2− 1

k).
In [19], the authors implement an MSR code known
as the Butterfly code and experimentally validate the
theoretically-proven benefits of reduced data download
for node repair. However, the Butterfly code is limited to
(n−k) = m = 2 and has large value of sub-packetization
2k−1. The restriction to small values of parameter m lim-

its the efficiency of repair, as the normalized repair band-
width can be no smaller than 1

2 . In this sense, the search
for an MSR code having all of the desirable properties
described above continued to remain elusive.

The recent theoretical results of Ye and Barg [32] have
resulted in an altered situation. In this work, the authors
provide a construction that permits storage overhead as
close to 1 as desired, sub-packetization level close to the
minimum possible, finite field size no larger than n, op-
timal disk IO, and all-node optimal repair. Clay codes
offer a practical perspective and an implementation of
the Ye-Barg’s theoretical construction, along with several
additional attributes. In other words, Clay codes possess
all of the desirable properties mentioned above, and also
offer several additional advantages compared to the Ye-
Barg code.

2.2 Refinements over Ye-Barg Code

The presentation of the Clay code here is from a coupled-
layer perspective that leads directly to implementation,
whereas the description in [32] is primarily in terms of
parity-check matrices. For example, using the coupled-
layer viewpoint, both data decoding (by which we mean
recovery from a maximum of (n− k) erasures) as well
as node-repair algorithms can be described in terms of
two simple operations: (a) decoding of the scalar MDS
code, and (b) an elementary linear transformation be-
tween pairs of bytes 3. While this coupled-layer view-
point was implicit in the Ye-Barg paper [32], we make it
explicit here.

In addition, Clay codes can be constructed using any
scalar MDS code as building blocks, while Ye-Barg code
is based only on Vandermonde-RS codes. Therefore,
scalar MDS codes that have been time-tested, and best
suited for a given application or workload need not be
modified in order to make the switch to MSR codes. By
using Clay codes, these applications can use the same
MDS code in a coupled-layer architecture and get the
added benefits of MSR codes.

The third important distinction is that, in [32], only
one node failure cases are discussed. For Clay codes, we
studied repair cases for multiple node failures as well.

4

Also, we came up with a generic algorithm to repair mul-
tiple failures.

3 Construction of the Clay Code

We will introduce the Clay code through an illustrative
example. While in Section 2, we noted that each node
stores a data chunk and that a data chunk is comprised of
N codewords, our description in the present section will
restrict to the case of a single codeword, i.e., to the case
when N = 1. As explained in Section 2, by interleav-
ing across the N codewords, one can make the transition
from bytes to sub-chunks and it is at the granularity of a
sub-chunks that operations take place in practice.

Our example code will have parameters:
{(n = 6,k = 4), d = 5,(α = 8,β = 4), M = 32}

(n,k) d (α,β) (dβ)/(kα)

(6,4) 5 (8,4) 0.625
(12,9) 11 (81,27) 0.407
(14,10) 13 (256,64) 0.325
(14,10) 11 (128,64) 0.55
(20,16) 19 (1024,256) 0.297

Table 2: A list of example parameters of a Clay code along with the corresponding
normalized repair bandwidth. Each of the codes in this table are experimentally
evaluated in the present work.

The codeword is stored across n = 6 nodes. Each su-
perbyte in this vector code, is comprised of α = 8 bytes,
with one data superbyte stored in each of the k = 4 data
nodes, while the (n− k) = 2 parity nodes each store one
parity superbyte. The storage efficiency of the code is the
ratio nα

kα
= n

k = 1.5 of the total number nα = 48 of bytes
stored to the number M = kα = 32 of data bytes. During
repair of a failed node, β = 4 bytes of data is downloaded
from each of the d = 5 helper nodes needed to recover the
lost superbyte. The normalized repair bandwidth is thus
given by (n−1)

k(d−k+1) = 0.625.
Table 2 lists the parameters of some other Clay codes

that can be constructed and as can be seen, the normal-
ized repair bandwidth can be made much smaller, by
increasing the value of (d − k + 1). For example the
normalized repair bandwidth for a (20,16) code equals
0.297, meaning that the amount of data download for
node repair in the case of a Clay code, is less than 30%
of the corresponding value for α layers of an RS code.

Data Cube Representation It will be convenient to
use a two-dimensional representation, in terms of (x,y)
coordinates to index the 6 nodes,

{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)} ,

as opposed to a linear numbering {1,2, · · · ,6}. Thus
the 6 nodes can be visualized as forming a (2× 3) grid

(Fig. 4). We will say that nodes belong to the same y-
section if they share the same y coordinate. We picture

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(y=1)-section

(y=0)-section (y=2)-section

Figure 4: The (x,y) representation of nodes showing y-sections.

these α = 8 bytes forming the superbyte in each node as
extending along a third z dimension. This leads us to a
3D pictorial representation for the data. We will refer to
this as the data cube associated with the codeword being
stored (Fig. 5). With this, we can think of the data cube
as comprised of 8 horizontal layers each indexed by the
integer z ∈ {0,1, · · · ,7}. It will be found convenient at
times to replace the scalar index z, by its corresponding
binary representation (z0,z1,z2) as below:

{0⇒ (0,0,0), 1⇒ (0,0,1), · · · , 6⇒ (1,1,0), 7⇒ (1,1,1)}.

Thus we can also associate each horizontal layer with the
binary 3-tuple (z0,z1,z2). We use a pattern of black dots
to indicate the label associated with each layer as shown
in Fig 5 which shows the layer (z0,z1,z2) = (0,1,0).

z= (0,0,0)

z= (1,1,1)

z= (1,1,0)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

z= (0,1,0)

Figure 5: Each vertical column in the data cube corresponds to a node and each
node stores a superbyte comprising of 8 bytes. Each of the smaller sub-cylinders
into which the contents of a node broken up, correspond to a single byte. The fig-
ure on the right illustrates the use of a pattern of black dots to identify a horizontal
plane, or equivalently, a byte within a superbyte.

We have thus far, indicated that the data stored in the
nodes and associated to a single codeword is best viewed
as corresponding to a data cube with one byte stored on
each vertex of the data cube. It remains to explain how
redundancy is introduced into this structure and how en-
coding, decoding and node repair are carried out.

Pairing of Bytes within the Data Cube Each vertex
(x,y;z) of the datacube is associated to a byte A(x,y;z)
of data. The 8 bytes {A(x,y;z)} sharing the same (x,y)

5

coordinate represent the superbyte stored in node (x,y).
There are two classes of vertices, those associated to a
black dot (colored) and those that are not (uncolored),
eqaully distributed at 24 apiece. The 24 uncolored ver-
tices are paired as shown in Fig. 6. The pair is composed
of a byte A(x,y;z) and its companion A∗(x,y;z). The
coordinates of the companion of the byte associated to
(x,y;z) can be computed simply by representing z in bi-
nary form and interchanging the values of x and zy. A few
such pairings are shown in Table 3. Note that a symbol A
and its companion A∗ both belong to the same y-section.

Coordinates of vertex Coordinates of companion vertex
(0, 0, 101) (1, 0, 001)
(1, 1, 101) (0, 1, 111)
(0, 2, 101) (1, 2, 100)

Table 3: Three example pairings of vertices.

B
B*

A
A*

Actual A Virtual B

Figure 6: The virtual data cube can be obtained from the Actual data cube by
a pairwise forward transformation and in the reverse direction, by a pairwise
reverse transformation. Vertex pairs in both Virtual and Actual data cubes are
identified by yellow rectangles connected using dotted lines.

Virtual Data Cube To explain the encoding process,
we introduce a second data cube B of identical size and
structure. To explain the relationship between the data
cubes A and B, we introduce a pairwise forward trans-
formation (PFT) that maps bytes in the data cube A to
corresponding bytes in the data cube B (see Fig. 6). We
will refer to A, B as the actual and virtual data cubes re-
spectively. Given a byte A having a companion A∗, we
define corresponding subchunks B, B∗ in the B data cube
via the linear transformation:[

B
B∗

]
=

[
1 u
u 1

][
A
A∗

]
(1)

where u is an element in the finite field of size 28 sat-
isfying u2 6= 1 and u 6= 0. Here we have abbreviated
and written A in place of A(x,y;z) and similarly with
{A∗,B,B∗}. Under this choice of u, it can be verified
that, any two bytes in the set {A,A∗,B,B∗} can be ob-
tained from the remaining two. We will refer to the com-
putation in the reverse direction as the pairwise reverse
transformation(PRT). In the case of an unpaired byte A
the relation is simply given by A = B.

Use pairwise coupling

transformation in the reverse

direction to obtain the data to be

stored in the parity nodes of A

Use the MDS code in layer-by-layer

fashion to determine data stored in

the parity nodes of B

Use pairwise coupling

transformation to obtain data

stored in the 4 data nodes of

virtual datacube B

Load data into the 4 data nodes of

real datacube A

MDS
Encode

PFT

PRT

Actual A Virtual B

Figure 7: Encoding Flowchart for the Clay code. A topview of the nodes is shown
on the right. The nodes colored in pink correspond to the real datacube and those
in blue to the virtual datacube.

Constraints and Encoding The constraints placed on
the data cube A arise indirectly from the pairwise relation
ship between data cubes A and B and in addition, the key
requirement that the symbols {B(x,y;z) | z∈ {0,1, . . . ,7}
in each horizontal layer of the data cube B are required
to form an (6,4) MDS code. While the layers in the data
cube B are uncoupled, in the case of the data cube A,
the constraints on the data cube B in conjunction with
the PFT causes coupling among the layers in A hence
the name Coupled-Layer (Clay) code. The flow chart in
Fig.7 provides a self-explanatory description of the en-
coding process. To explain node repair and decoding, we
introduce the notion of an intersection score.

Intersection Score The Intersection Score (IS) of a
layer is given by the number of hole-dot pairs in a
plane, where holes correspond to erasures and by dots,
we mean the back dots introduced earlier. For exam-
ple in Fig. 8, when nodes (0,1), (0,2) are erased, layers
(0,0,0),(0,1,0),(0,1,1) have respective IS=2,1,0.

(a) IS=2 (b) IS=1 (c) IS=0

Figure 8: Illustration of the intersection score (IS) for erasures at (0,1),(0,2).

Node Repair During node repair, all the layers with
IS > 0 are picked and the bytes from these layers corre-
sponding to all the remaining nodes represent the helper
data. In Fig. 9 the repair of node (1,0) is illustrated and

6

the corresponding repair layers are indicated. It can be
seen that only 4 bytes from each of the 5 nodes partici-
pate in the repair process. Thus a total of 20 bytes suf-
fice for node repair, whereas the repair of an RS code
would require the transfer of all the data belonging to
any 4 nodes, for a total data download of 32 bytes.

Decoding The decoding algorithm “Decode” of the
Clay code is able to correct for the erasure of any any
m = n− k = 2 nodes. Decoding is carried out sequen-
tially, layer-by-layer, in order of increasing IS. We de-
scribe below as an example, the decoding algorithm
when nodes (0,1), (0,2) are erased. In Fig.10, we ex-
plain the decoding procedure for a layer having IS= 0. A
similar procedure can be followed subsequently for lay-
ers with IS = 1. followed by layers with IS= 2. The only
difference is that in decoding a layer with IS> 0, we will
need to use the fact that bytes in layers with lesser IS
have already been decoded. The sequential decoding al-
gorithm ensures that all the bytes B in the corresponding
layer of B can be decoded. Having obtained all the B
bytes, the A bytes can be computed using the pairwise
reverse transformation (PRT).

MDS Dec

Actual A Virtual B

B,A

 A

 A*

A* is
computed

from using A
and B

PFT

Figure 9: The dotted cylinder identifies the erased node. All the bytes shown
on the top left represent helper data, the layers shown are the repair layers. The
pairwise forward transform is first performed on the helper data to obtain the
corresponding B bytes followed by the operation ‘MDS decode to obtain the
remaining B subchunks. The erased chunk is now computed using the PRT.

Clay code parameters Clay codes can be constructed
in for any t and any parameter set of the form:

(n = qt, k, d) (α = qt ,β = qt−1), with q = (d− k+1).

The encoding, decoding and repair algorithms all are
along the lines of that for the case d = (n−1). However,

MDS Dec

PFT

Actual A Virtual B

A

A AA,A*

A* A* B

B B B

B B

B

B

B B

Figure 10: Illustrating how the Clay code recovers from the maximum possible 2
of erasures. (Left) the pink circles indicate the non-erased nodes. (Middle) blue
nodes indicate nodes in the virtual data cube B whose contents can be determined
through pairwise forward transformation(PRT), (Right) Through decoding of the
MDS code, contents of all B nodes in this layer can be determined.

in the case d < n− 1, during single node repair, while
picking the d helper nodes, one must include among
the d helper nodes, all the nodes belonging to the failed
node’s y-section.

Clay codes for any (n,k,d) The parameters indicated
above have the restriction that q divide n. But the con-
struction can be extended in a simple way to the case
when q is not a factor of n. Our implementation of Clay
code includes this generalization.

4 Ceph and Vector MDS Codes

4.1 Introduction to Ceph

Ceph [29] is a popular, open-source distributed storage
system [30], that permits the storage of data as objects.
Object Storage Daemon (OSD) is the daemon process of
Ceph, associated with a storage unit such as a solid-state
or hard-disk drive, on which user data is stored.

Ceph supports multiple erasure-codes, and a code
can be chosen by setting attributes of the erasure-code-
profile. Objects will then be stored in logical partitions
referred to as pools associated with an erasure-code-
profile. Each pool can have a single or multiple place-
ment groups (PG) associated with it. A PG is a collec-
tion of n OSDs, where n is the block length of the erasure
code associated to the pool.

The allocation of OSDs to a PG is dynamic, and is
carried out by the CRUSH algorithm [31]. When an ob-
ject is streamed to Ceph, the CRUSH algorithm allocates
a PG to it. It also performs load balancing dynamically
whenever new objects are added, or when active OSDs
fail. Each PG contains a single, distinct OSD designated
as the primary OSD (p-OSD). When it is required to store
an object in a Ceph cluster, the object is passed on to the
p-OSD of the allocated PG. The p-OSD is also responsi-
ble for initiating the encoding and recovery operations.

In Ceph, the passage from data object to data chunks
by the p-OSD is carried out in two steps as opposed to the
single-step description in Section 2. For a large object,
the amount of buffer memory required to perform encod-
ing and decoding operations will be high. Hence, as an

7

intermediate step, an object is first divided into smaller
units called stripes, whose size is denoted by S (in bytes).
If an object’s size is not divisible by S, zeroes are padded.
The object is then encoded by the p-OSD one stripe at a
time. The stripe-size is to be specified within the clus-
ter’s configuration file. Both zero padding and system
performance are important factors to be considered while
fixing a stripe-size.

4.2 Sub-Chunking through Interleaving

To encode, the p-OSD first zero pads each stripe as nec-
essary in order to ensure that the strip size S is divisible
by kα . The reason for the divisibility by a factor of k is
because as described earlier, the first step in encoding is
to break up each stripe into k data chunks of equal size.
The reason for the additional divisibility requirement by
a further factor α arises because we are dealing with a
vector code and as explained in Section 2, operations in
a vector code involve superbytes, where each superbyte
contains α bytes. In what follows, we will assume that S
is divisible by kα .

The encoding of a stripe is thus equivalent to encod-
ing N = S

kα
codewords at a time. The next step as ex-

plained in Section 2, is interleaving at the end of which
one obtains α sub-chunks per OSD, each of size N bytes.
We note that the parameter L introduced in Section 2, is
the number of bytes per data chunk and is thus given by
L = S

k . This notion of sub-chunk is not native to Ceph,
but rather is a modification to the Ceph architecture pro-
posed here, to enable the support of vector codes.

The advantage of a vector code is that it potentially
enables the repair of an erased coded chunk by passing
on a subset of the α sub-chunks. For example, in the
Clay code implemented in Ceph here is an MSR code,
it suffices for each node to pass on β sub-chunks. How-
ever, when these β sub-chunks are not sequentially lo-
cated within the storage unit, it can result in fragmented
reads. We analyze such disk read performance degrada-
tion in Section 5.

4.3 Implementation in Ceph

Our implementation makes use of the Jerasure [21] and
GF-Complete [20] libraries which provide implementa-
tions of various MDS codes and Galois-field arithmetic.
We chose in our implementation to employ the finite field
of size 28 to exploit the computational efficiency for this
field size provided by the GF-complete library in Ceph.

In the our implementation, we employ an additional
buffer, termed as B-buffer, that stores the sub-chunks as-
sociated with the virtual data cube B introduced in Sec-
tion 3. This buffer is of size nL = S n

k bytes. The B-buffer
is allocated once for a PG, and is used repetitively dur-
ing encode, decode and repair operations of any object
belonging to that PG.

Pairwise Transforms We introduced functions that
compute any two sub-chunks in the set {A,A∗,B,B∗}
given the remaining two sub-chunks. We im-
plemented these functions using the function jera-
sure matrix dotprod(), which is built on top of function
galois w08 region multiply().
Encoding Systematic encoding of an object is carried
out by p-OSD by pretending that m parity chunks have
been erased, and then recovering the m chunks using the
k data chunks by initiating the decoding algorithm for the
code. Pairwise forward and reverse transforms are the
only additional computations required for Clay encoding
in comparison with MDS encoding.
Enabling Selection Between Repair & Decoding
When one or more OSDs go down, multiple PGs are af-
fected. Within an affected PG, recovery operations are
triggered for all associated objects. We introduced a
boolean function is repair() in order to choose between
a bandwidth, disk I/O efficient repair algorithm and the
default decode algorithm. For the case of single OSD
failure, is repair() always returns true. There are multi-
ple failure cases as well for which is repair() returns true
i.e., efficient repair is possible. We discuss these cases in
detail in Section.6.
Helper-Chunk Identification In the current
Ceph architecture, when a failure happens, mini-
mum to decode() is called in order to determine the
k helper chunk indices. We introduced a function
minimum to repair() to determine the d helper chunk
indices when repair can be performed efficiently i.e.,
when is repair() returns true. OSDs corresponding to
these indices are contacted to get information needed
for repair/decode. When there is a single failure,
minimum to repair() returns d chunk indices such that
all the chunks that fall in the y-cross-section of the failed
chunk are included. We describe the case of multiple
erasure cases in detail in Section.6
Fractional Read For the case of efficient repair, we
only read a fraction of chunk, this functionality is imple-
mented by feeding repair parameters to an existing struc-
ture ECSubRead that is used in inter-OSD communica-
tion. We have also introduced a new read function with
Filestore of Ceph that supports sub-chunk reads.
Decode and Repair Either the decode or repair func-
tion is called depending on whether if is repair() returns
true or false respectively. The decoding algorithm is de-
scribed in Sec. 3. Our repair algorithm supports in addi-
tion to single-node failure (Sec.3), some multiple-erasure
failure patterns as well (Sec. 6).

4.4 Potential Contributions to Ceph
Enabling vector codes in Ceph : We intro-
duced the notion of sub-chunking and the functions

8

get repair subchunks, minimum to repair in order to en-
able new vector erasure code plugins. This contribution
is currently under review.
Clay codes in Ceph : We implemented Clay codes as
a technique (cl msr) within the jerasure plugin. The cur-
rent implementation gives flexibility for a client to pick
any n,k,d parameters for the code. It also gives an op-
tion to choose the MDS code used within to be either a
Vandermonde-based-RS or Cauchy-original code.

5 Experiments and Results

The experiments conducted to evaluate the performance
of Clay codes in Ceph while recovering from a single
node failure are discussed in the present section. Experi-
mental results relating multiple node-failure case can be
found in Sec. 6.1.

5.1 Overview and Setup
Codes Evaluated While Clay codes can be con-
structed for any parameter set (n,k,d), we have carried
out experimental evaluation for selected parameter sets
close to those of codes employed in practice, see Ta-
ble 4. Code C1 has (n,k) parameters comparable to that
of the RDP code [7], Code C2 with the locally repairable
code used in Windows Azure [15], and Code C3 with
the [20,17]-RS code used in Backblaze [1]. There are
three other codes C4, C5 and C6 that are an approximate
match for the [14,10]-RS code used in Facebook data-
analytic clusters [24]. Results relating to Codes C4-C6
can be found in Sec. 6.1, which focuses on repair in the
multiple-erasure case.

(n,k,d) α Storage overhead β

α

C1 (6,4,5) 8 1.5 0.5
C2 (12,9,11) 81 1.33 0.33
C3 (20,16,19) 1024 1.25 0.25
C4 (14,10,11) 128 1.4 0.5
C5 (14,10,12) 243 1.4 0.33
C6 (14,10,13) 256 1.4 0.25

Table 4: Codes C1-C3 are evaluated in Ceph for single-node repair. The evalua-
tion of Codes C4-C6 is carried out for both single and multiple-node failures.

The experimental results for Clay code are compared
against experimental results for RS codes possessing
the same (n,k) parameters. By an RS code, we mean
an MDS-code implementation based on the cauchy orig
technique of Ceph’s jerasure plugin. The same MDS
code is also employed as the MDS code appearing in the
Clay-code construction evaluated here.

Experimental Setup All evaluations are carried out on
Amazon EC2 instances of the m4.xlarge (16GB RAM, 4
CPU cores) configuration. Each instance is attached to
an SSD-type volume of size 500GB. We integrated the

Clay code in Ceph Jewel 10.2.2 to perform evaluations.
The Ceph storage cluster deployed consists of 26 nodes.
One server is dedicated for the MON daemon, while the
remaining 25 nodes each run one OSD. Apart from the
installed operating system, the entire 500GB disk is ded-
icated to the OSD. Thus the total storage capacity of the
cluster is approximately 12.2TB.

Object Distribution
Model Object # Objects Total, T Stripe

size (MB) (GB) size, S
Fixed (W1) 64MB 8192 512 64MB

64 6758
Variable 32 820 448 1MB

(W2) 1 614

Table 5: Workload models used in experiments.

Overview Experiments are carried out on both fixed
and variable object-size workloads, respectively referred
to as W1 and W2. In the W2 workload, we choose objects
of sizes 64MB, 32MB and 1MB distributed in respec-
tive proportions of 82.5%, 10% and 7.5%. Our choices
of object sizes cover a good range of medium (1MB),
medium/large(32MB) and large (64MB) objects[3], and
the distribution is chosen in accordance with that in the
Facebook data analytic cluster reported in [22]. The
workloads used for evaluation are summarized in Tab. 5.
The stripe-size S is set as 64MB, and 1MB respectively,
for fixed and variable object-size workloads so as to
avoid zero-padding.

The failure domain is chosen to be a node. Since we
have one OSD per node, this is equivalent to having a
single OSD as the failure domain. We inject node fail-
ures into the system by removing OSDs from the cluster.
Measurements are taken using nmon and NMONVisual-
izer tools. We run experiments with a single PG, and
validate the results against the theoretical prediction. We
also run the same experiments with 512 PGs, which we
will refer to as the multiple-PG case. Measurements are
made of (a) repair network traffic, (b) repair disk read,
(c) repair time, and (d) encoding time.

5.2 Evaluations

Network Traffic: Single Node Failure Network traf-
fic refers to the data transferred across the network dur-
ing single-node repair. Repair is carried out by the
p-OSD, which also acts as a helper node. The the-
oretical estimate for the amount of network traffic is
T
k ((d− 1) β

α
+ 1) bytes for a Clay code, versus T bytes

for an RS code. Our evaluations confirm the expected
savings, and we observed reductions of 25%, 52% and
66%, (a factor of 2.9×) in network traffic for codes C1,
C2 and C3 respectively in comparison with the corre-
sponding RS codes under fixed and variable workloads

9

(see Fig. 11(a), 11(d).) As can be seen, the code C3 with
the largest value of q = (d− k+1) offer the largest sav-
ings in network traffic.

In certain situations, an OSD that is already part of
the PG can get reassigned as a replacement for the failed
OSD, leading to inferior network-traffic performance in
a multiple-PG setting. Nevertheless, we present the per-
formance for a single run of the experiment with multiple
PGs under the W1 workload in Fig. 12. We emphasize
however, that single-run performance cannot be used to
make judgments on performance.

Disk Read: Single Node Failure The amount of data
read from the disks of the helper nodes during the repair
of a failed node is referred to as disk read and is an im-
portant parameter to minimize [23], [17].

Depending on the index of the failed node, the sub-
chunks to be fetched from helper nodes in a Clay code
can be contiguous or non-contiguous. Non-contiguous
reads in HDD volumes lead to a slow-down in perfor-
mance [19]. Even for SSD volumes that permit reads
at a granularity of 4kB, the amount of disk-read needed
depends on the sub-chunk-size. We explain here, disk
reads from a helper node in the case of single node fail-
ure for the code C3 in case of workload W2 (S=1MB).
The chunk size here is given by L = S/k = 64kB. Dur-
ing repair of any node, L/(d− k+ 1) = 16kB of data is
to be read from each helper node. In the best case sce-
nario, the 16kB data is contiguous, where as for the worst
case scenario the reads are fragmented. In the later case,
β = 256 fragments with each of size L/α = 64bytes are
read. When 4kB of data is read from device, only 1kB
ends up being useful for the repair operation. Therefore,
the data read essentially is 4 times the amount of infor-
mation needed for repair. This is evident in disk reads
from a helper node for the worst case in 11(f).

When the same code C3 is used for W1 workload
(64MB stripe size), for the worst case scenario, frag-
ments of size S/kα = 4kB are read. As this size is
aligned to the granularity of SSD reads, disk reads for
worst case is equal to 256 ∗ 4kB=1MB. This is exactly
the amount read during best case(see 11(f)). The exper-
imental results in 11(e) suggest that for W2 workloads,
C1 is a good choice, while C2 and C3 are not suitable.
Whereas results in 11(b) show that all the three codes
perform well for the case of W1 workloads.

While making disk-read measurements, we clear the
cache prior to repair to obtain the actual disk-read. The
expected disk-read from all helper nodes during repair
is T dβ

kα
bytes for a Clay code in contrast to T bytes for

an RS code. In experiments with fixed object-size (see
Fig. 11(b)), we obtain savings of 37.5%, 59.3% and
70.2% (a factor of 3.4×) for codes C1, C2 and C3 re-
spectively, when compared against the corresponding RS

code. Fig. 12 shows the disk read in the multiple-PG set-
ting.

Figure 12: Network traffic and disk read during repair of single node in a setting
with 512 PGs, for W1 worklaod.

Repair Time and Encoding Time We measure the
time taken for repair by capturing the starting and stop-
ping times of network activity within the cluster. We
observed a significant reduction in repair time for Clay
codes in comparison with an RS code. For the code C3
in a single-PG setting, we observe a reduction by a fac-
tor of 3× in comparison with an RS code. This is mainly
due to reduction in network traffic and disk IO required
during repair (see Fig.11(c)).

We define the time required by the RADOS utility
to place an object into Ceph object-store as the encod-
ing time. The encoding time includes times taken for
computation, disk-IO operations, and data transfer across
the network. We define the time taken for computing
the code chunks based on the encoding algorithm as the
encode computation time. During encoding, the net-
work traffic and I/O operations are the same for both
the classes of codes. Although the encode computation
time of Clay code is higher than that of the RS code (See
Fig. 13.) the encoding time of a Clay code remains close
to that of the corresponding RS code. The increase in the
computation time for the Clay code is due to the multipli-
cations involved in PFT and PRT operations. In storage
systems, while data-write is primarily a one-time oper-
ation, failure is a norm and thus recovery from failures
is a routine activity [10],[23]. The significant savings in
network traffic and disk reads during node repair are a
sufficient incentive for putting up with overheads in the
encode computation time.

Figure 13: Comparison of average encoding times for C1, C2 and C3 in compar-
ison with RS codes, for the W1 worklaod.

10

(a) Network Traffic (Workload W1) (b) Disk-read (Workload W1) (c) Average Repair time (Workload W1)

(d) Network Traffic (Workload W2) (e) Disk-read (Workload W2) (f) Fragmented Read (Workload W1)

Figure 11: Experimental evaluation of C1, C2 and C3 in comparison with RS codes in a single-PG setting is presented in plots (a)-(e). The plot (f) gives a relative
comparison of disk-read in a helper node for stripe-sizes 4MB and 64MB for code C3.

6 Handling Failure of Multiple Nodes

The Clay code is capable of recovering from multiple
node-failures with savings in repair bandwidth. The
failure patterns that can be recovered with bandwidth-
savings are referred to as repairable failure patterns.

Repairable Failure Patterns (i) d < n−1: Clay codes
designed with d < n−1 can recover from e failures with
savings in repair bandwidth when e≤ n−d, with a minor
exception described in Remark 1. We have to choose
helper nodes in such a way that if a y-section contains a
failed node, then all the surviving nodes in that y-section
must act as helper nodes. For example, consider the code
with parameters (n = 14,k = 10,d = 11). The nodes can
be put in a (2×7) grid, as q= d−k+1= 2 and t = n

q = 7.
In Fig.14, we assume that nodes (0,0) and (0,1) have
failed, and therefore nodes (1,0) and (1,1) along with
any 9 other nodes can be picked as helper nodes.

(0,0) (0,1) (0,6)

(1,6)

(0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

Figure 14: The (2×7) grid of 14 nodes in Clay code with parameters (14,10,11).
The nodes (0,0) and (0,1) have failed.

(ii) d = n−1: When the code is designed for d = (n−
1), any number of upto (q−1) failures that occur within
a single y-section can be recovered with savings in repair
bandwidth. As the number of surviving nodes is smaller

than d in such a case, all the surviving nodes are picked
as helper nodes. See Fig. 15 for an example of failure-
pattern in the case of a (14,10,13) Clay code.

(0,0) (0,3)

(1,0)

(2,0)

(3,0)

(1,3)

(2,3)

(3,3)

(0,2)

(1,2)

(2,2)

(3,2)

(1,1)

(2,1)

(3,1)

(0,1)

Figure 15: The (4× 4) grid containing 14 nodes in (14,10,13) Clay code. The
cells (2,2) and (3,2) in the grid do not represent nodes. The nodes (0,0) and
(2,0) coming from 0-section have failed.

Repair Layers For the case of single failure, we have
already observed that all the layers with IS > 0 are
picked. The logic remains the same for case of multi-
ple failures as well.
Remark 1 Whenever there are q failures within the
same y-section, every layer will have IS > 0, and the
repair algorithm will need all the sub-chunks from ev-
ery helper node. Therefore in these cases, decode algo-
rithm is a better option and the is repair() function (see
Sec. 4.3.) takes care of this case by returning false.

Repair Bandwidth Savings We describe here how to
compute network traffic during the repair of a multiple-
failure pattern. Let ei be the number of erased nodes
within (y = i)-section, and the total number e of failures

is given by e=
t−1
∑

i=0
ei. The number of helper nodes dm = d

if the code is designed for d < (n−1), and dm = n−e if it
is designed for d = (n−1). Total number of sub-chunks

11

βm needed from each helper node is same as the number
of layers with IS > 0. This can be obtained by subtract-
ing from α the count of layers with IS= 0. The number

of helper sub-chunks per node, βm = α−
t−1
∏
i=0

(q−ei), and

network traffic for repair is dmβm.
Thus for the case of (14,10,13) code, any failure-

pattern with 2 or 3 failures occurring within a single y-
section can be repaired efficiently. And for (14,10,11)
code, any failure-pattern with 2 or 3 failures occurring
in distinct y-sections can be repaired efficiently. In 16,
we show the average network traffic needed while repair-
ing 2 failures, assuming that all two-failure-patterns are
equally likely. Similar calculation is done for the case of
failure-patterns with 1,3 and 4 failures.
Repair Algorithm We present proposed repair algo-
rithm in 1, that is generic for single and multiple era-
sures. This is invoked whenever savings in bandwidth
are possible, i.e, when is repair() returns true. In the al-
gorithm, we refer to those non-erased nodes that are not
helper nodes as aloof nodes.

Algorithm 1 repair

1: Input: E (erasures), I (aloof nodes).
2: repair layers = get repair layers(E).
3: set s = 1.
4: set maxIS = max of IS(E ∪I ,z) over all z from

repair layers
5: while (1≤ s≤maxIS)
6: for (z ∈ repair layers and IS(E ∪I ,z) = s)
7: if (IS(E ,z)> 1) G = φ

8: else {
9: a = the erased node with hole-dot in layer z

10: G is set of all nodes in a’s y-section.}
11: E ′ = E ∪G∪I
12: Compute B sub-chunks in layer z corre-

sponding to all the nodes other than E ′

13: Invoke scalar MDS decode to recover B sub-
chunks for all nodes in E ′

14: end for
15: s = s+1
16: end while
17: Compute A chunks corresponding to all the erased

nodes, from B chunks in repair layers along with the
helper data.

6.1 Evaluation of Multiple Erasures
Network Traffic and Disk Read While the primary
benefit of the Clay code is the optimal network traffic
and disk read during repair of a single node failure, it also
yields savings over RS counterpart code in the case of a
large number of mutiple-node failure patterns. To our

knowledge, this is the first demonstration of such sav-
ings by an MSR code in a multiple-node-failure scenario.
We evaluate the performance of codes C4-C6 under W1
workload injecting multiple node-failures in a setting of
512PGs. The plots for network traffic and disk read, for a
single run in the multiple-PG setting is shown in Fig. 17,
16. We emphasize however, that single-run performance
of multiple-pg cannot be used to make judgments on per-
formance. The expected behaviour can be seen only if we
average out the results over multiple runs.

Figure 16: Average network traffic evaluation of C4-C6 against RS codes (W1
workload, multiple-PG).

Figure 17: Disk-read evaluation of C4-C6 against RS codes (W1 workload,
multiple-PG).

7 Conclusions

In this work, we present Clay codes that are constructed
by placing any MDS code in multiple layers, and per-
forming pair-wise coupling across layers. Clay codes
provide the first practical implementation of an MSR
code that offers (a) low storage overhead, (b) optimal
repair bandwidth, (c) low sub-packetization level, (d)
support for both single and multiple-node repairs and
(e) uniform repair performance of data and parity nodes
while permitting faster & more efficient repair. We im-
plemented Clay codes in Ceph and evaluated the repair
performance of six example codes, whose parameters
match with known erasure-code deployments in practice.
A particular Clay example code, with storage overhead
1.25, is shown to reduce repair network traffic, disk read
and repair times by factors of 2.9, 3.4 and 3 respectively.
We also modified Ceph to support any vector code, and
our contribution is on its way to Ceph’s master code-
base. In summary, we feel that Clay codes are good can-
didates to make the transition from theory to practice.

12

References
[1] Backblaze data service provider. https://www.

backblaze.com/blog/reed-solomon/. Accessed:
2017-Sep-28.

[2] Ceph source code (master branch). https://github.com/
ceph/ceph.

[3] Red hat ceph storage: Scalable object storage on qct servers - a
performance and sizing guide. Reference Architecture.

[4] Tutorial: Erasure coding for storage applications.
http://web.eecs.utk.edu/˜plank/plank/
papers/FAST-2013-Tutorial.html. Accessed:
2017-Sep-28.

[5] BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J. EVEN-
ODD: an efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Trans. Computers 44, 2 (1995), 192–
202.

[6] CHEN, H. C., HU, Y., LEE, P. P., AND TANG, Y. Nccloud: A
network-coding-based storage system in a cloud-of-clouds. IEEE
Transactions on Computers 63, 1 (2013), 31–44.

[7] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row-diagonal par-
ity for double disk failure correction. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies (2004),
pp. 1–14.

[8] DIMAKIS, A., GODFREY, P., WU, Y., WAINWRIGHT, M., AND
RAMCHANDRAN, K. Network coding for distributed storage
systems. IEEE Transactions on Information Theory 56, 9 (Sep.
2010), 4539–4551.

[9] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUIN-
LAN, S. Availability in globally distributed storage systems.
In Presented as part of the 9th USENIX Symposium on Operat-
ing Systems Design and Implementation (Vancouver, BC, 2010),
USENIX.

[10] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S. The google file
system. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles 2003, SOSP 2003, Bolton Landing, NY,
USA, October 19-22, 2003 (2003), pp. 29–43.

[11] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2003),
SOSP ’03, ACM, pp. 29–43.

[12] GLIGOROSKI, D., KRALEVSKA, K., JENSEN, R. E., AND
SIMONSEN, P. Locally repairable and locally regenerating
codes obtained by parity-splitting of hashtag codes. CoRR
abs/1701.06664 (2017).

[13] HU, Y., CHEN, H., LEE, P., AND TANG, Y. NCCloud: apply-
ing network coding for the storage repair in a cloud-of-clouds. In
Proceedings of the 10thth USENIX Conference on File and Stor-
age Technologies(FAST) (2012).

[14] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., AND YEKHANIN, S. Erasure coding in
windows azure storage. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12) (Boston, MA,
2012), USENIX, pp. 15–26.

[15] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., AND YEKHANIN, S. Erasure cod-
ing in Windows Azure storage. In Proceedings of the 2012
USENIX conference on Annual Technical Conference (Berkeley,
CA, USA, 2012), USENIX ATC.

[16] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A. Are disks
the dominant contributor for storage failures?: A comprehensive
study of storage subsystem failure characteristics. Trans. Storage
4, 3 (Nov. 2008), 7:1–7:25.

[17] KHAN, O., BURNS, R. C., PLANK, J. S., AND HUANG, C. In
Search of I/O-Optimal Recovery from Disk Failures. In USENIX
HotStorage (2011).

[18] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E.,
LIU, W., PAN, S., SHANKAR, S., SIVAKUMAR, V., TANG, L.,
AND KUMAR, S. f4: Facebook’s warm BLOB storage system. In
11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14) (Broomfield, CO, 2014), USENIX As-
sociation, pp. 383–398.

[19] PAMIES-JUAREZ, L., BLAGOJEVIC, F., MATEESCU, R.,
GUYOT, C., GAD, E. E., AND BANDIC, Z. Opening the
chrysalis: On the real repair performance of MSR codes. In
Proceedings of the 4th USENIX Conference on File and Storage
Technologies (2016), pp. 81–94.

[20] PLANK, J., GREENAN, K., MILLER, E., AND HOUSTON, W.
Gf-complete: A comprehensive open source library for galois
field arithmetic. University of Tennessee, Tech. Rep. UT-CS-13-
703 (2013).

[21] PLANK, J. S., AND GREENAN, K. M. Jerasure: A library
in c facilitating erasure coding for storage applications–version
2.0. Tech. rep., Technical Report UT-EECS-14-721, University
of Tennessee, 2014.

[22] RASHMI, K. V., CHOWDHURY, M., KOSAIAN, J., STOICA,
I., AND RAMCHANDRAN, K. Ec-cache: Load-balanced, low-
latency cluster caching with online erasure coding. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. (2016), pp. 401–417.

[23] RASHMI, K. V., NAKKIRAN, P., WANG, J., SHAH, N. B., AND
RAMCHANDRAN, K. Having your cake and eating it too: Jointly
optimal erasure codes for i/o, storage, and network-bandwidth. In
Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST, (2015), pp. 81–94.

[24] RASHMI, K. V., SHAH, N. B., GU, D., KUANG, H.,
BORTHAKUR, D., AND RAMCHANDRAN, K. A solution to the
network challenges of data recovery in erasure-coded distributed
storage systems: A study on the facebook warehouse cluster. In
5th USENIX Workshop on Hot Topics in Storage and File Sys-
tems, HotStorage’13, 2013 (2013), USENIX Association.

[25] RASHMI, K. V., SHAH, N. B., GU, D., KUANG, H.,
BORTHAKUR, D., AND RAMCHANDRAN, K. A ”hitchhiker’s”
guide to fast and efficient data reconstruction in erasure-coded
data centers. In ACM SIGCOMM 2014 Conference, (2014),
pp. 331–342.

[26] RASHMI, K. V., SHAH, N. B., AND KUMAR, P. V. Optimal
Exact-Regenerating Codes for Distributed Storage at the MSR
and MBR Points via a Product-Matrix Construction. IEEE Trans-
actions on Information Theory 57, 8 (Aug 2011), 5227–5239.

[27] SATHIAMOORTHY, M., ASTERIS, M., PAPAILIOPOULOS,
D. S., DIMAKIS, A. G., VADALI, R., CHEN, S., AND
BORTHAKUR, D. Xoring elephants: Novel erasure codes for
big data. PVLDB 6, 5 (2013), 325–336.

[28] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real
world: What does an mttf of 1,000,000 hours mean to you? In
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2007), FAST ’07, USENIX
Association.

[29] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance dis-
tributed file system. In 7th Symposium on Operating Systems

13

https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://github.com/ceph/ceph
https://github.com/ceph/ceph
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html

Design and Implementation (OSDI ’06), November 6-8, Seattle,
WA, USA (2006), pp. 307–320.

[30] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND
MALTZAHN, C. Grid resource management - CRUSH: con-
trolled, scalable, decentralized placement of replicated data. In
Proceedings of the ACM/IEEE SC2006 Conference on High Per-
formance Networking and Computing, November 11-17, 2006,
Tampa, FL, USA (2006), p. 122.

[31] WEIL, S. A., LEUNG, A. W., BRANDT, S. A., AND
MALTZAHN, C. RADOS: a scalable, reliable storage service for
petabyte-scale storage clusters. In Proceedings of the 2nd Inter-
national Petascale Data Storage Workshop (PDSW ’07), Novem-
ber 11, 2007, Reno, Nevada, USA (2007), pp. 35–44.

[32] YE, M., AND BARG, A. Explicit constructions of optimal-access
MDS codes with nearly optimal sub-packetization. IEEE Trans.
Information Theory 63, 10 (2017), 6307–6317.

14

	Introduction
	Background and Preliminaries
	Related Work
	Refinements over Ye-Barg Code

	Construction of the Clay Code
	Ceph and Vector MDS Codes
	Introduction to Ceph
	Sub-Chunking through Interleaving
	Implementation in Ceph
	Potential Contributions to Ceph

	Experiments and Results
	Overview and Setup
	Evaluations

	Handling Failure of Multiple Nodes
	Evaluation of Multiple Erasures

	Conclusions

